

Código: GD-PR-010-FR-FORMATO DE PRÁCTICAS ACADÉMICAS

800

Versión: 02 Fecha de Aprobación:

Proceso: Gestión de Docencia

Macroproceso: Gestión Académica

04/10/2017

GUÍA DE LABORATORIO PARA ENSAYO DE RESISNETCIA AL **DESGASTE CON MIRCO-DEVAL**

Contenido

1.	RES	:UMEN2	2		
2.	MAF	RCO TEÓRICO2	2		
3.	EQL	JIPO2	2		
3	.1.	Agregado Grueso	2		
3	.2.	Agregado Fino	3		
4.	OBJ	ETIVO	1		
•	.1. no.	Determina la resistencia a la abrasión de muestras de agregado grueso y agregado 4)		
5.	PRE	CAUCIONES	ļ		
5	.1.	Utilizar grupos de granulometría inadecuada	ļ		
6.	PRC	OCEDIMIENTO	1		
6	.1.	Realización De Ensayos Agregado Grueso	ļ		
6	.2	Realización De Ensayos Agregado Fino	5		
7.	CAL	CULOS6	3		
8.	DAT	OS CALCULADOS6	3		
8	.1.	Datos Experimentales Agregado Grueso	3		
8	.2.	Datos Experimentales Agregado Fino	7		
9.	REF	ERENCIAS	7		
		TABLA DE ILUSTRACIONES			
		n 1 Balanza y horno3			
		n 2 Tamices n 3 Tabla 1 de Granulometría para el agregado grueso, INV E-238			
		n 4 Tabla 2 de Granulometría 2 para el agregado grueso, INV E-238			
llus	ustración 5 Tabla 3 de Granulometría 3 para el agregado grueso, INV E-2385				
	stración 6 Recipiente junto a la carga abrasiva y el imán				
		n 8 Tabla de datos Agregado Grueso			
		n 9 Tabla de datos Agregado Fino7			

FORMATO DE PRÁCTICAS ACADÉMICAS	Código: GD-PR-010-FR- 008	
Macroproceso: Gestión Académica	Versión: 02	SIC
Proceso: Gestión de Docencia	Fecha de Aprobación: 04/10/2017	Sste

1. RESUMEN

El **ensayo Mirco-Deval** es la medida de la resistencia a la abrasión y durabilidad de los agregados, junto con un proceso de molienda con esferas de acero y agua. Se tiene una muestra con granulometría normalizada, se sumergen en agua por una hora, esta muestra se coloca en un recipiente de acero de dimensiones establecidas, con cierto contenido de agua y una carga abrasiva (esferas de acero de 9.5mm de diámetro), todo debe girar a 100rpm por dos horas o 15 minutos. Posteriormente se lava la muestra y se seca al horno. La pérdida es la cantidad de material que pasa el tamiz No 6 o N200 dependiendo del agregado, esto será expresado en porcentaje de la masa seca original de la muestra. La cantidad de material, agua, carga abrasiva, tamaño del cilindro y tiempo del ensayo se diferencian en si el material es agregado grueso o fino.

2. MARCO TEÓRICO

Siendo la abrasión la acción de quitar algo mediante fricción, los agregados en presencia de agua y carga abrasiva sueles ser menos resistentes en estado húmedo, los agregados pueden perder resistencia, por ello este método es importante para definir el comportamiento del material

3. EQUIPO

3.1. Agregado Grueso

- a. Máquina de abrasión Micro-Deval, capaz de producir en los cilindros una velocidad de 100rpm
- b. Cilindros metálicos con capacidad de 5 litros, de 20cm de diámetro, espesor de 3mm.
- c. Carga abrasiva de esferas magnéticas de acero inoxidable de 9.5 mm de diámetro. Serán 5000g de estas esferas.
- d. Balanza con precisión de 1g
- e. Tamices de 3/4". 5/8" 1/2" 3/8" 0.265" 1/4" No.4 y No.16
- f. Horno capaz de mantener una temperatura de 110°C

FORMATO DE PRÁCTICAS ACADÉMICAS	Código: GD-PR-010-FR- 008	
Macroproceso: Gestión Académica	Versión: 02	SIGUD
Proceso: Gestión de Docencia	Fecha de Aprobación: 04/10/2017	Sstena Integrado de Gestón

3.2. Agregado Fino

- a. Máquina de abrasión Micro-Deval, capaz de producir en los cilindros una velocidad de 100rpm
- b. Cilindros metálicos con capacidad de 5 litros, de 20cm de diámetro, espesor de 3mm.
- c. Carga abrasiva de esferas magnéticas de acero inoxidable de 9.5 mm de diámetro. Serán 1250g de estas esferas.
- d. Balanza con precisión de 1g
- e. Tamices de 0.265" o ¼", No.4, No.16, No.30, No.50, No.100 y No.200
- f. Horno capaz de mantener una temperatura de 110°C

Ilustración 1 Balanza y horno

Ilustración 2 Tamices

FORMATO DE PRÁCTICAS ACADÉMICAS	Código: GD-PR-010-FR- 008	
Macroproceso: Gestión Académica	Versión: 02	SIC
Proceso: Gestión de Docencia	Fecha de Aprobación: 04/10/2017	Sstem

4. OBJETIVO

 Determina la resistencia a la abrasión de muestras de agregado grueso y agregado fino.

5. PRECAUCIONES

5.1. Utilizar grupos de granulometría inadecuada

6. PROCEDIMIENTO

6.1. Realización De Ensayos Agregado Grueso

- a. Lavar y secar al horno una muestra de agregado.
- b. Preparar una muestra de 1500g con una de las siguientes granulometrías, dependiendo de cada tipo de requerimiento. El material debe estar entre los tamices ³/₄" y 3/8".

PASA TAMIZ	RETENIDO EN EL TAMIZ	MASA
19.0 mm	16.0 mm	375 g
16.0 mm	12.5 mm	375 g
12.5 mm	9.5 mm	750 g

Ilustración 3 Tabla 1 de Granulometría para el agregado grueso, INV E-238 Si el tamaño máximo nominal es de 12.5mm:

PASA TAMIZ	RETENIDO EN EL TAMIZ	MASA
12.5 mm	9.5 mm	750 g
9.5 mm	6.3 mm	375 g
6.3 mm	4.75 mm	375 g

Ilustración 4 Tabla 2 de Granulometría 2 para el agregado grueso, INV E-238 Si el tamaño máximo nominal es de 9.5mm:

FORMATO DE PRÁCTICAS ACADÉMICAS	Código: GD-PR-010-FR- 008	
Macroproceso: Gestión Académica	Versión: 02	SIGU
Proceso: Gestión de Docencia	Fecha de Aprobación: 04/10/2017	Sstema Integri

PASA TAMIZ	RETENIDO EN EL TAMIZ	MASA
9.5 mm	6.3 mm	750 g
6.3 mm	4.75 mm	750 g

Ilustración 5 Tabla 3 de Granulometría 3 para el agregado grueso, INV E-238

- c. Se somete la muestra a inmersión de 2 litros de agua, durante un tiempo mínimo de una hora, ya sea en el recipiente de Micro-Deval u otro recipiente.
- d. Se coloca el recipiente cilíndrico con la carga abrasiva de 5000g, junto con el material sumergido y se coloca sobre la maquina Micro-Deval
- e. La máquina rotará a una velocidad de 100rpm durante 2horas para la primera gradación, para la segunda será 105 minutos y para la última será de 95 min.
- f. Se procede a retirar las esferas magnéticas de acero junto a un imán, cuando se retiren todas las esferas, se procede a lavar el material sobre el tamiz No.4 y No.16. El material que pasa el tamiz No.16 se desecha, el agua debe ser limpia.
- g. Se envía al horno a 110°C, cuando este en masa constante se toma el peso

Ilustración 6 Recipiente junto a la carga abrasiva y el imán

6.2 Realización De Ensayos Agregado Fino

- a. Lavar sobre el tamiz No.200 y secar al horno una muestra de agregado.
- b. Preparar una muestra de 500g con la siguiente granulometría. El material debe estar entre los tamices No.4 y No.200.

FORMATO DE PRÁCTICAS ACADÉMICAS	Código: GD-PR-010-FR- 008
Macroproceso: Gestión Académica	Versión: 02
Proceso: Gestión de Docencia	Fecha de Aprobación: 04/10/2017

PASA TAMIZ	RETENIDO EN EL TAMIZ	MASA
4.75 mm	2.36 mm	50 g
2.36 mm	1.18 mm	125 g
1.18 mm	600 μm	125 g
600 μm	300 μm	100 g
300 μm	150 μm	75 g
150 μm	75 μm	25 g

Ilustración 7 Tabla 4 de Granulometría para el agregado fino, INV E-245

- c. Se somete la muestra a inmersión de 0.75 litros, durante un tiempo mínimo de una hora, ya sea en el recipiente de Micro-Deval u otro recipiente.
- d. Se coloca el recipiente cilíndrico con la carga abrasiva de 1250g, junto con el material sumergido y se coloca sobre la maquina Micro-Deval
- e. La máquina rotará a una velocidad de 100rpm durante 15 min para un total de 1500 revoluciones.
- f. Se procede a retirar las esferas magnéticas de acero junto a un imán, cuando se retiren todas las esferas, se procede a lavar el material sobre el tamiz de 0.265 o ¼" y No.16. El material que pasa el tamiz No.200 se desecha, el agua debe ser limpia.
- g. Se envía al horno a 110°C, cuando este en masa constante se toma el peso.

7. CALCULOS

Se calcula la perdida de material por abrasión Micro-Deval, redondeada a 0.1%.

Porcentaje de Perdidas:
$$\frac{A-B}{A} * 100$$

Siendo A el peso material inicial de la muestra (1500g o 500g), B es el peso del material seco después que se lavó en el tamiz No.16 o No.200 respectivamente.

8. DATOS CALCULADOS

8.1. Datos Experimentales Agregado Grueso

Micro-Deval Agregado Grueso	
Peso del material inicial. g (A)	1500g
Granulometría	
Peso del Tamiz Retenido, g	

FORMATO DE PRÁCTICAS ACADÉMICAS Macroproceso: Gestión Académica Proceso: Gestión de Docencia Código: GD-PR-010-FR-008 Versión: 02 Fecha de Aprobación: 04/10/2017

Peso del Tamiz Retenido, g	
Peso del Tamiz Retenido, g	
Cantidad de Agua, L	2L
Carga abrasiva, g	5000g
Peso del material final. g (B)	

Ilustración 8 Tabla de datos Agregado Grueso

8.2. Datos Experimentales Agregado Fino

Micro-Deval Agregado Fino	
Peso del material inicial. g (A)	500g
Granulometría	
Peso del Tamiz Retenido, g	
Cantidad de Agua, L	0.75L
Carga abrasiva, g	1250g
Peso del material final. g (B)	

Ilustración 9 Tabla de datos Agregado Fino

9. REFERENCIAS

9.1 Normas y Especificaciones 2012 INVIAS, INV E-238, INV E-245